
Extended Abstract

Motivation Modern paradigm for using language models often assumes downloading a large
pre-trained model and fine-tuning it for downstream tasks. Supervised Fine-Tuning comprises of
doing additional optimisation steps on the full set of model’s weights starting from the pre-trained
values and using a custom dataset, more representative of the desired specialised downstream task.
Additional characteristics can be induced on the model, like presence of "reasoning" steps which
breakdown the problem into steps and have been shown to increase model’s performance. Reinforce-
ment Learning techniques have been shown to be particularly useful for inducing these additional
behaviours and tuning model further, especially when dealing with limited, but high quality data. For
these reasons the RL element of LLM development is often dubbed "the cherry on top" in the "cake
analogy"Mundt et al. (2025).

Method This project focused mainly on improving LLM performance on Math Reasoning tasks.
The particular task considered in this work is the numerical version of a game of Countdown. In
this game a participant is required to use the set of provided input numbers and basic arithmetic
operations to arrive at a provided target number subject to certain additional constraints. A huge
benefit of this task is that while it’s non-trivial to solve, and when modelling it as a search problem
the resulting tree has a high branching factor, the solutions to it are trivially verifiable.

Implementation The starting point for this project it the pre-trained Qwen2.5-0.5B modelHui
et al. (2024). It features around half a billion parameters (0.36B excluding the embeddings layer), 24
Transformer layers, context length of 32,768 tokens and a multilingual support. Hence it offerers a
very reasonable balance between portability and expressibility and is thus a great starting point for
trying to get a reasonable performance on our task.

SFT:"WarmStart"Gandhi et al. (2025): reasoning-inducing dataset for the game of Countdown
contained 1,000 query and response pairs. DPO: "TinyZero"’s datasetPan et al. (2025) containing
490,000 pairs of of a single target number and 3-4 input numbers for the game of Countdown.

Results We have observed a similar pattern across both tasks. SFT brought about the bulk of the
improvements aligning the model more closely with the task at hand. With Math Reasoning task
we would observe it directly from generated outputs. Before SFT there were no reasoning steps
or answer formatting. The outputs made some vague references to maths and calculation, but the
provided answers weren’t useful in any way. After the SFT step the model consistently exhibited
reasoning behaviour, though the actual reasoning steps were sometimes spurious or limited. The
formatting started appearing, but not consistently. The optimisation results seemed to saturate well
before reaching the final number of SFT steps. The RL methods were able to bring additional, if
modest gains from that point. Within Math Reasoning task this translated into more sensible reasoning
steps and better use of formatting. True breakthrough came from test-time compute use of a verifier
and tuing of generation parameters. This shows that combining the LLM workflow with additional
tooling may often be the most desirable course of action for tasks requiring specific formatting or NP
problems with efficient verifiers.

Discussion Over the course of this project with have found that a lot can be done in terms of im-
proving model’s task-specific performance with reasonable amounts of data and reasonable compute.
While not a consumer hardware, the AWS G6e instance featuring a 48GB GPU (NVIDIA L40S)
which has been used for running the experiments is relatively affordable.
It was quite a journey which made us get hands-on with a lot of practical software engineering
problems and gain a deeper, more intimate understanding of the fine-tuning process, the algorithms
involved and the importance of appropriate data processing.

Conclusion This work has shown an importance of multi-pronged approach to fine-tuning and
the relative strengths and weaknesses of different families of methods. The enormous potential of
test-time methods shows that a thorough analysis of target uses cases of a fine-tuned model needs to
be carried out to decide if the computational budget should be invested more towards optimisation or
inference.
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Abstract

This project focused on improving LLM performance on Math Reasoning tasks,
specifically the numerical version of Countdown game where participants use
provided input numbers and basic arithmetic operations to arrive at a target number.
A nice characteristic of this problem is that it’s trivially verifiable, in fact we
use the same verifier in many parts of the project. This stylised problem brings
useful insights into the usefulness of using LLMs combined with efficient verifiers
on LP family of problems. We have also considered the Instruction Following
task, although less emphasis was placed on it. We have developed a common
computational framework for both tasks with supervised fine-tuning as the first
step, followed by Reinforcement-Learning based methods as an additional step. For
Math Reasoning we have used REINFORCE leave-one-out, an online algorithm
using our reward function to construct advantage estimates of reduced variance.
For Instruction following task we have used an offline Direct Policy Optimisation
method and a corresponding preference data set. We concluded with exploration
of test-time method which brought about enormous increase in the overall model
performance on the Math Reasoning task.

1 Introduction

Modern paradigm for using language models often assumes downloading a large pre-trained large
language model (LLM) and fine-tuning it for downstream tasks. Various techniques are employed
to achieve this goal. Supervised Fine-Tuning (SFT) comprises of doing additional optimisation
steps on model’s weights starting from the pre-trained values and using a custom dataset, more
representative of the specialised downstream task considered. With appropriately chosen dataset
additional characteristics like "reasoning steps" (whereby a model breaks down the problem into
smaller parts and solves them sequentially) can be induced into the pre-trained model.
SFT can either be done as full fine-tuning where all of model’s weights get optimised or using various
"Parameter Efficient Fine-Tuning" (PEFT) methods which typically focus on modifying the attention
or feed-forward layers of a transformer-based in some way which uses significantly less parameters
than the total number of parameters in the base pre-trained model. Both of these families of methods
can lead to much better task-specific performance in many cases. However, since they all focus on
minimising the next-token prediction objective they have their limitations, especially as far as more
complex tasks are concerned.
For that reason they are often augment with Reinforcement Learning-based methods which allow
more precise injection of user preferences into the optimisation objective. Lastly, aside from training,
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significant performance gains can often also be realised at inference time by altering the default
generation mechanism of the model. This project explores all of the aforementioned techniques
with the aim of getting the best possible performance on the downstream tasks considered and
understanding the contribution of these various elements.

2 Related Work

The Math Reasoning task considered in this work will be the numerical version of a game of
Countdown1. A huge benefit of this task is that while it’s non-trivial to solve, and when modelling
it as a search problem the resulting tree has a high branching factor, the solutions to it are trivially
verifiable. Since this is basically the definition of NP problems Wigderson (2019), this stylised
problem can bring useful insights into the usefulness of using LLMs combined with efficient verifiers
on this family of problems. Gandhi et al. (2024) have studied the performance of an LLM on this task.
The authors have constructed a synthetic dataset where they generated a random set of input numbers
and targets and then used a few different simple heuristics to generate solutions. They have used a
domain specific language to represent the process of solving the problem. Importantly, heuristics were
deliberately chosen to be simple and not all of them yielded a correct answer (accuracy of around
57%). They have also used another dataset comprised of optimal solutions without any additional
reasoning and backtracking steps present it the first dataset. Interestingly, the model achieved a
higher performance when trained with the former dataset (accuracy of 51.27% vs 25.73%). They
have then applied Reinforcement Learning (RL) techniques to further increase the performance of
the model by 6%. It would have been interesting if the authors have varied the accuracy of the set
of heuristic solutions used as input data and presented how it impacted the accuracy of the trained
model. The strategy used by the authors is an example of inducing Chain-of-Thought reasoning
capabilities to a LLM. This technique encourages the model to output a reasoning process whilst
generating an answer and has been shown to improve performance on variety of tasks including Math
Reasoning. It’s an example of a wider set of techniques called "test time inference" where additional
computational resources are used by the model at inference time in order to generate a higher quality
answer. It is these methods that we would like to explore in the extension part of the project. RL is a
key ingredient in successfully implementing many of these techniques as recently exemplified by the
immensely popular DeepSeek model DeepSeek-AI et al. (2025).
Snell et al. (2024) study optimal allocation of test-time compute depending on the type and difficulty
of a task. They have estimated that an optimal strategy brings about a 2-4 times improvement in the
efficiency of test time compute. This highlights that the often neglected generation parameters should
be treated on par with other hyperparameters when trying to improve model’s overall performance
on a task. They have also studied the trade-off between using a larger model as is versus a smaller
model with effectively implemented test time inference and found that the later can still outperform
a vanilla model that is up to 14 times larger. While deciding optimal test-compute strategy may
not be applicable to our task at hand (the task is fairly uniform, and modifying strategy based on
input and target numbers may have very limited impact on performance not justifying the additional
complexity) these findings solidified our view that it’s a worthy area of research as it can be used by
relatively small entities with more limited budget to still achieve state of the art results on certain tasks.
The authors divide test time computation approaches into two categories: input level interventions
which modify the distribution of LLMs outputs and output level techniques which use learned reward
models (called verifiers) to perform post-hoc output modifications.
Zhang et al. (2025) study verifiers in more detail. They contrast their typical use case of assigning a
score to a candidate solution and choosing the final solution based on that with verifiers trained on
next-token prediction which integrate better with the underlying architecture of LLMs and established
instruction fine-tuning techniques. They also propose a variant particularly well-suited to models
using Chain-of-Thought technique. Wang et al. (2023) show that extending CoT technique with
self-consistency can further improve performance. Their approach uses a simple assumption that for
tasks with well defined solutions all the correct reasoning paths should converge on the same answer.

1In this game a participant is required to use the set of provided input numbers and basic arithmetic operations
to arrive at a provided target number subject to certain additional constraints.
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3 Method

3.1 Tasks

In this project we consider two downstream tasks: Mathematical Reasoning and Instruction Following.
The inputs to the Math Reasoning are an array of 3 or 4 input integers as well as a target integer. The
task is to construct and equation using the basic arithmetic operations and using each input integer
exactly once so that the result equals the target number. The focus is on evaluating and improving
model’s ability to perform multi-step mathematical reasoning using natural language. Additionally,
the task is to put the resulting equation between the <answer> and </answer> HTML-style tags. This
presents additional challenge for the model, however it also improves it’s usefulness and potential
ease of integration with downstream systems.
Instruction Following task is to generate coherent, relevant, and helpful responses to the presented
prompts spanning variety of tasks including, but not limited to: translation, summarization, guidance,
knowledge checks and information retrieval.
We consider each of the tasks separately, hence the models customized for each of the tasks are never
used with the other task. While pre-trained models try to strike a balance between a variety of tasks
and maintain a good overall performance, our approach here is to use the LLM as a tool to solve a
problem at hand as well as possible with no regard to how the model generalises to other tasks or
even the overall language modelling abilities.

3.2 Metrics

Math Reasoning: the model gets a score of 0 for a generated answer if it doesn’t contain these
tags irrespective of presence or correctness of the equation. If the equation presented between the
tags correctly evaluates to the target number and uses all of the input numbers exactly once then a
score of 1 is awarded for the entire generation (including the formatting score). Since formatting
part is an enabler for potentially receiving the higher score for correctness, we track the fraction of
malformatted answers across our validation data set.

Instruction Following: we use an external model to assess model’s responses and compare them
to baselines. Baseline for SFT is the pre-trained model, baseline for DPO is the result of SFT fine
tuning. We then construct prompt-by-prompt win indicator function (1 if the answer of the current
model gets a higher score than that of a reference model and 0 otherwise) and average them across
the validation set to get the win-rate.

We consider both tasks separately, while they both start from the common base model the models used
diverge from that point onwards. There’s a separate SFT step for each of the tasks. Next, the result
of that step gets fed into the RL step which is RLOO for Math Reasoning and DPO for Instruction
Following. For Math Reasoning we also take the best model from RL step and try to increase its
performance further using test-time compute methods.

3.3 Supervised Fine-Tuning (SFT)

Like most modern workflows for customizing a general pre-trained LLM to a specific task at hand,
we start with SFT. For both tasks we consider the full fine-tuning as well as Low-Rank Adaption
(LoRA) methods. We use the same number of optimiser steps for each of these methods and track the
loss function as well as validation metrics appropriate for each of the tasks across these steps. The
loss function is given by:

LSFT(πθ) := max
θ

Ex,y∈D

|y|∑
t=1

log πθ(yt|x, y<t), (1)

where θ represents the model parameters being optimised, D is the dataset of prompt-response pairs
(x, y), |y| is the length of the response sequence, yt is the token at position t in the sequence, y<t

denotes all the tokens before it, and πθ(yt|x, y<t) is the probability assigned by the model to token
yt conditional on the prompt tokens x and preceding response tokens y<t.
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3.4 REINFORCE Leave-One-Out (RLOO)

Ahmadian et al. (2024) looked into Proximal Policy Optimisation (PPO) algorithm applied to LLM
fine-tuning. The authors argued that the algorithm is actually not that well suited to practical
fine-tuning applications, where the base model is already fairly well-aligned with the task. They
demonstrated that per token reward structure is sparse and often spurious as it’s really the end
of sequence token that brings about most rewards. Therefore they argue that a reward for entire
generation is a better approach in many applications. The authors have also shown that PPO is heavily
sensitive to hyperparameter choice making practical use more challenging. They have combined those
observations into a variant of popular REINFORCE Williams (1992) algorithm from Reinforcement
Learning with a leave one-out approach to advantage estimation which mitigates the variance of the
estimate. The resulting loss function is given below:

LRLOO(πθ;πref) :=
1

k

k∑
i=1

R(y(i), x)−
1

k − 1

∑
j ̸=i

R(y(j), x)− α log
πθ(y(i)|x)
πref(y(i)|x)

∇ log πθ(y(i)|x)

(2)

where x is the input prompt, k is the number of samples generated per x, y(i) is the i-th response
sampled from the target model, R(y, x) is the reward function, πθ(·|x) is the probability distribution
of the target model parametrised by θ, πref(·|x) is the probability distribution of the reference model,
α is the weight controlling the strength of the Kullback–Leibler divergence penalty between the
current model and the reference model aimed at preventing the target model from drifting too far
away from the reference model to mitigate possibility of catastrophic forgetting, and ∇ is the gradient
operator.
It is an online RF algorithm (it requires generations from the model being optimised). In many
applications R(y, x) needs to be learned, however in our case we can just use the Countdown reward
function used for evaluation. We skip the prompts for which all generations result in equal rewards
from the loss function as that brings no additional information. We considered adding a length
penalty to the reward which penalises divergence from mean response observed in the "WarmStart"
set to enrich the reward signal, however since this approach has not improved the performance of the
algorithms we skip its details for the sake of brevity.

3.5 Direct Policy Optimisation (DPO)

DPO is an RL-based algorithm which relies on the target model and the reference model, as well of
pair of preferred (yw) and rejected (yl) responses per prompt x. These responses are pre-generated
and can come from any model or other source and ofen involve human or model-based labelling.
Hence it’s considered an offline algorithm. The loss function is given below:

LDPO(πθ;πref) := −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
, (3)

where πθ(·|x) is the probability distribution of the target model parametrised by θ, πref(·|x) is the
probability distribution of the reference model, D is a dataset of preference tuples (x, yw, yl), σ is
the logistic function, and β is the parameter controlling the level of adherence to reference model’s
behaviour.

3.6 Test-time compute

Finally, we turn our attention away from modifying model parameters and explore the performance
improvements that can be achieved by taking closer look at the inferences process and how it can be
modified. We only consider the Math Reasoning task in this part.
We being by exploring impact of various generation parameters (maximum response length, Softmax
temperature, repetition penalty) We also consider the following sampling schemes when generating
each next token. Standard multinomial sampling: consider all tokens proportionally to model’s
probability distribution. Top-K: consider only top k most probable tokens. Top-P: consider only the
smallest subset of tokens whose cumulative probability if greater than or equal to p. Beam search
expand n sequences in parallel, return sorted by cumulative probability (highest first).
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Lastly, we choose the most promising schemes and parameters discussed above and extend the
inference logic with a verifier which can score the multiple responses provided per same input prompt.
We provide two thresholds: primary and secondary. First we consider a primary threshold and narrow
down the results to the ones which meet or exceed it. If there’s at least one match we return the top
match (preserving the ordering output by the model, sorted by sum of log probabilities). If there’s no
match we consider the secondary threshold with a lower value and act analogously. If this also yields
no results we return the first generation returned by the model (analogous to no verifier).

4 Experimental Setup

We use 1,000 optimiser steps for SFT part and 50 steps for RL part for each of the tasks. We set
these limits arbitrarily to strike a balance between sensible exploration of the evolution of the loss
function and reasonable runtime. We have chosen to use the these relative values as RL techniques
can much more computationally expensive (especially the online ones) and usually require more
carefully curated datasets, hence we believe this split to be realistic of actual tasks solved this way
within the academia and the industry.
During evaluation of SFT and RL algorithms we always use greedy decoding (Softmax temperature
of 0). The main reason is to reduce the variance of the scores based on the corresponding generations
and hence make them more comparable across optimiser steps. A side benefit is that it makes the
generation quicker and more memory-efficient. We use vLLM (a local language server) for generation
during evaluation as it’s more efficient. In RLOO we still use Hugging Face’s models directly to
generate as it simplifies the codebase and makes log-probabilities easier to calculate from logits
output by the model. Also, the small batch sizes that we use likely wouldn’t justify incurring the
overhead for spinning up a new vLLM instance after each optimiser step. One problem that we have
noticed with vLLM is that it introduces some stochasticity into the generations even when done on
the same set of model weights with all random number generators seeded right before the generation.
The problem is exacerbated by the use of BFloat16 format, hence we ended up using Float16 when
quantizing models to lower precision to aid the performance. We have also implemented gradient
accumulation for the same reason. To help with stability we have also implemented gradient clipping
and learning rate scheduling.

4.1 Data

For Math Reasoning task we have used the following datasets:

• "WarmStart"2: reasoning-inducing dataset for the game of Countdown.

– Resulting splits: training - 800, development - 200, test - 200.
– Used for: SFT (training split).

• "Countdown-Tasks-3to4"3

– Resulting splits: training - 343,254, development - 98,073, test - 49,037.
– Used for: RLOO (training split) and validation (development split subsets).

For Instruction Following task we have used the following datasets:

• "SmolTalk"4: high-quality chat responses from GPT-4o

– Resulting splits: training - 368,272, development - 92,069, test - 24,229.
– Used for: SFT (training split).

• "Ultrafeedback"5:instruction following preference dataset

– Resulting splits: training - 48,908, development - 12,227, test - 2,000.
– Used for: DPO (training split) and validation (development split subsets).

2Gandhi et al. (2025),https://huggingface.co/datasets/Asap7772/cog_behav_all_strategies
3Pan et al. (2025) https://huggingface.co/datasets/Jiayi-Pan/Countdown-Tasks-3to4
4Allal et al. (2025),https://huggingface.co/datasets/HuggingFaceTB/smol-smoltalk
5Dubois et al. (2024), www.huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized
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We have implemented pipeline for downloading datasets from HuggingFace (HF) and preparing local
splits saved as a parquet files. These can then be loaded into memory and encoded in one go, or
streamed from disk and encoded on the fly as batches get traversed6. We have put aside 20% of each
training set as a development set to be used during subsequent evaluations when comparing different
methods, and for hyperparameter optimisation.
Next step was to determine the optimal maximum sizes for tokenized representation of queries and
responses from the training set. Our analysis (see Figure 1) revealed that for "SmolTalk" 260 tokens
for query and 426 tokens for response were enough to fully cover 95% of the dataset. For "WarmStart"
the corresponding figures were 153 and 7307. Performance test has shown that our data pipeline can
handle 1e5 examples from both training sets (encoding both query and token) in around 100s. Tests
with sets used for evaluation in this part of the project - "UltrafeedBack" and "Countdown" - yielded
respectively 45s and 32s when encoding query only. We use the response limits established during
the analysis of training sets during evaluation with our fine-tuned models unless stated otherwise.

(a) SmolTalk Queries (b) SmolTalk Responses (c) WarmStart Queries (d) WarmStart Responses

Figure 1: Dataset tokenized context length distributions, red vertical line indicates the mean.

4.2 Models

The starting point for both tasks is it the pre-trained Qwen2.5-0.5B model Hui et al. (2024). Hugging
Face implementation of the model is used along with model weights downloaded from the same
source. We also use Hugging face to store model weights from our experiments for reproducibility and
inference. The version of Qwen2.5 model which we used features around half a billion parameters
(0.36B excluding the embeddings layer), 24 Transformer layers, maximum context length of 32,768
tokens and a multilingual support. Hence it offerers a very reasonable balance between portability
and expressibility and is thus a great starting point for our fine-tuning experiments. This version of
the model has not been explicitly tuned for instruction following before our fine-tuning process.

Additionally, Llama-3.1-nemotron-70b-reward Bercovich et al. (2025) model has been used for
the evaluation of the Instruction Following task performance. We use the NVIDIA-hosted version8 to
get the score for completion of a given prompt. We compare these against corresponding scores for
the reference model (for SFT this is the base Qwen2.5-0.5B model, for DPO it’s the result of the
SFT step).

4.3 Hyperparameters

We use the standard implementation of AdamW from PyTorch as our optimiser. We fix weight_decay
at 0.01 and vary learning rate depending on the use case, but use consistent setting across both tasks.
For SFT we use a learning rate scheduler with 100 warm-up steps during which the learning rate is
increased linearely from 0 to a target rate. Over the next 900 steps we use the CosineAnnelingLR
scheduler from PytTorch to decrease the learning rate to tenth of the target value. The target value for
full fine-tuning is 2× 10−5, for LoRA it’s 5× 10−5. Both RLOO and DPO used a constant learning
rate of 1× 10−5. SFT used a batch size of 4 with 5 accumulation steps (effective batch size of 20),

6The second option is mainly useful when using MPS framework for rapid development on a local machine
as it uses unified memory and any memory used-up before the training loop won’t be available to GPU cores
during training. For GPU-enabled VMs this isn’t as useful as tokenizers typically use CPU and RAM rather than
GPU and VRAM anyway

7For both datasets we have applied the chat template. For "SmolTalk" we included system messages (15%)
of the dataset and reduced each example to just one user-assistant exchange.

8https://build.nvidia.com/nvidia/llama-3_1-nemotron-70b-reward/modelcard
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both RL algorithms used a batch size of 2 with 2 accumulation steps (effective batch size of 4). The
dropout rate was left at the standard 0.1 from the base model.

Both LoRA configurations used α of 16 and dropout rate of 0.05. Other parameters corresponding to
the two sets which yielded best scores on MultiNLI Williams et al. (2018) dataset in the original LoRA
paper Hu et al. (2021). Namely, LORA_1 uses a rank of 8 and targets WQ, WV in each transformer
layer, while LORA_2 uses a rank of 2 and targets WQ, WK , WV , WO in each transformer layer. Same
LoRA configurations are applied to both tasks. RLOO achieved best results with α = 0 and k = 4.
DPO achieved best results with β = 0.01.
Test-time compute without a verifier achieved best results with beam search with 8 beams (maximum
number considered), no repetition penalty and double the response context length compared to what
the model was trained with.
When extending test-time compute with verifier function we achieve best results with standard multi-
nomial sampling (neither Top-K nor Top-P sampling) with 16 samples (highest number considered),
a Softmax temperature of 1 and the double the same response length as what the model was trained
on.
Please refer to the Appendix for the details of hyperparamter tuning experiments conducted. Please
note that due to the long runtimes we have carried out opportunistic hyperparameter tuning where
we have concentrated on a selected subset of parameters, ordered them by the expected impact
and then for each of them considered a few candidates, selected the one yielding best results, fixed
that parameter and moved to consider the next. Clearly, this isn’t the best possible approach as
relationships between these parameters are definitely non-linear, however it’s the best we could
achieve under the limited computational resources we were able to devote to this project.
Please refer to Section B of the Appendix for additional implementation details.

5 Results

5.1 Qualitative Analysis

Let’s consider Instruction Following task first. In Figure 2 we can see initial increase in the loss
function which soon changes into a mild, decreasing in a sustained way, slope (amid all the noise
coming from each mini-batch step considering a different subset of data) despite having covered only
a fraction of the epoch. LoRA fares marginally better here. However, when looking at DPO results,
using the full set of model weights rather than the LoRA model yields much better results. This
indicates that additional degrees of freedom are beneficial in modelling the relative preferences while
not diverging too far from the reference model. We notice that a very mild β = 0.01 copes best. The
slope of the DPO loss and resulting average win rate increase is similarly shallow and fluctuating.
Moving on to Math Reasoning in Figure 3 we notice a similarly noisy loss function, however with
a much more rapidly decreasing slope in the earlier steps of the optimiser. We can observe that
while both LoRA methods managed to decrease the loss objective substantially, this has not fed
into any increase in the training score or drop in the number of malformatted responses. It may be
that additional expressibility coming from embeddings layer or the later model layers immediately
preceding the logits calculation is needed to induce the correct formatting behaviour. While the
RLOO loss function is quite noisy, the algorithm did manage to noticeable improve the score on the
validation subset in just 50 iterations.

5.2 Quantitative Evaluation

Consulting Table 1 we can see that SFT increased the average win rate quite substantially compared
to the baseline model (45.5%). DPO managed to add another 7 percentage points to this, despite
doing a small fraction of the iteration steps. However the training time was very similar to SFT at
around 30 minutes.
Moving on to Table 2 we observe a similar pattern, however the gains from RLOO are smaller
compared to DPO (just over 3 percentage), despite over 50% longer training time compared to SFT
for this task.
However, the most remarkable gains in performance come from test-time compute extensions to the
model which increase the average score by over 40 percentage points at a cost of just over 3 times
longer inference time. Figure 4 dissects various candidate test-time compute methods in more detail.
We see a large range of performances, with beam-based methods usually performing worse than
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Table 1: Instruction Following

Method Avg. win-rate1 Training time2 Inference time3 Final leaderboard score

Base Model adas - - 28s -
SFT 0.4550 33m00s 28s -
DPO 0.5250 30m32s 28s [NOT PROCESSED IN TIME]

1 Average score win-rates for development split of "Ultrafeedback" dataset reduced to 200 observations.
Base model is treated as a baseline in both cases and win-rates are computed w.r.t. relative scores as-
signed by an external model the the base model and the target model.
2 Includes 6 evaluation steps of 200 data points each.
3 Per 200 data points, includes generation by the model only, not scoring with the external model.

standard multinomial sampling (despite much longer generation times) in the presence of a verifier.
Without the verifier it was actually beam methods which performed better. The overall performance
of the model with different test-time compute methods varies from just over 52% to over 90%. More
details on the effect of different generation hyperparameters can be found in Section A.1.3 of the
Appendix.

(a) SFT (b) DPO

Figure 2: Instruction Following: SFT and DPO loss function and avg. win rate evolution (current
optimiser step vs model at step 0) for development split of "Ultrafeedback" dataset reduced to 200
observations.

(a) SFT (b) RLOO

Figure 3: Math Reasoning: SFT and RLOO loss function and average score across generations for
development split of "Countdown-Tasks-3to4" dataset reduced to 200 observations.

6 Discussion

The results in this project are broadly in line with wider literature. SFT brings about steady im-
provements up to a certain point, RL-based methods can be used to increase the performance by
additional margins from there. The beauty of these methods is that they allow easier injection of
user preferences into the optimisation process. Here our evaluation metrics and preferences were
not just post hoc reported numbers, but in a way also inputs into the optimisation process itself. We
would’ve liked to carry out RL-based optimisation for both tasks with larger batch sizes and for more
optimisation steps, but due to the high computational cost and memory saturation that characterises
these methods we struggled to do more while maintaining a sensible computational budget.
The often neglected generation parameter hypertuning and test-time compute methods brought about
an impressive performance boost.

8



Figure 4: Test-time compute: impact of different verifier based strategies on average score across
generations for development split of "Countdown-Tasks-3to4" dataset reduced to 200 observations.

Table 2: Math Reasoning

Method Avg. score1 Training time Inference time3 Final leaderboard score

Base Model 0.0000 - 30s -
SFT 0.4700 20m35s2 30s -
RLOO 0.5085 31m25s2 30s 0.3160
Test-time compute 0.9100 0s 98s 0.6715

1 Average score across generations for development split of "Countdown-Tasks-3to4" dataset re-
duced to 200 observations.
2 Includes 6 evaluation steps of 200 data points each.
3 Per 200 data points.

7 Conclusion

This work has shown the importance of multi-pronged approach to fine-tuning and the relative
strengths and weaknesses of different families of methods. The enormous potential of test-time
methods shows that a thorough analysis of target uses cases of a fine-tuned model needs to be carried
out to decide if the computational budget should be invested more towards optimisation or inference.

8 Team Contributions

• Witold Gawlikowicz: This was a solo project, hence all contributions are mine.

Changes from Proposal Have not managed to look into these stretch goals mentioned in the
proposal: few shot learning using the base model without any additional fine-tuning, Chain-of-
Thought verifiers (GenRM-CoT) Zhang et al. (2025), oracle-based approach where LLM is given
an access to a simple algebraic calculator to verify the solution, preferably via a formalised tool use
framework in a similar fashion to Andor et al. (2019) (would require re-training and we were already
low on AWS credit and time towards the end of the project).
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A Additional Experiments

A.1 Math Reasoning

A.1.1 SFT

Figure 5 shows SFT results for Math Reasoning along with malformatted fraction of responses.

Figure 5: SFT (Math Reasoning): full fine-tuning vs LoRA.

A.1.2 RLOO

Figure 6 shows impact of KL divergence penalty (α) parameter on model’s performance.
Figure 7 shows impact of learning rate parameter on model’s performance.
Figure 8 shows impact of length penalty parameter on model’s performance.
Figure 9 shows impact of number of generations (k) parameter on model’s performance.

A.1.3 Test-time compute

Figure 10 shows impact of various generation paramters on model’s performance.
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Figure 6: RLOO: impact of KL divergence penalty.

Figure 7: RLOO: impact of learning rate.

A.2 Instruction Following

A.2.1 DPO

Figure 11 shows impact of number of β parameter on model’s performance.

B Implementation Details

We have used an M1 Macbook Pro with EleutherAI/pythia-70m model (a model optimised for
CPUs) for a lot of the local development to save AWS credits.

All of the computations aimed improving the performance of tasks considered have been carried out
on AWS G6e instance featuring a 48GB GPU (NVIDIA L40S). The reported runtimes correspond to
that hardware.

We have used Hugging Face for downloading datasets and model weights. PyTorch has been used for
all the tensor computations, optimisation and dataset handling (we have implemented our own data
structures implementing PyTorch’s Dataset class).

We have also implemented Weights & Biases integration for convenient reporting and monitoring
during remote runs, as well as saving optimised models to private repositories on Hugging Face Hub.
We have also implemented extensive logging to help with debugging and configuration files serialised
to disk and uploaded to W&B after each run to assure reproducibility.
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Figure 8: RLOO: impact of length penalty.

Figure 9: RLOO: impact of number of generations.

(a) Rep Pen (b) Top P (c) Top K

(d) Max Beam (e) Max Temp (f) Max Resp

Figure 10: Verifier external parameter analysis
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Figure 11: DPO: impact of β.
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